

Multigraph Project: First Steps towards the Definition
of a Multiple Attack Graph Model Simulator
Mattia Zago§, Juan José Andreu Blázquez†, Manuel Gil Pérez†, Gregorio Martínez Pérez†

§ University of Verona, † University of Murcia
mattia.zago@studenti.univr.it, {juanjose.andreu, mgilperez, gregorio}@um.es

Abstract—This paper presents the design and implementation

of a software component acting as a simulator and aiming to help
in the deployment of novel attack graph models. It is also intended
to help comparing these novel approaches with already existing
designs and implementations. It has also as an objective to
determine those aspects of existing models that have not been
completely defined or specified by their authors and thus may
need some completion before being used in lab or real attack
scenarios.

I. INTRODUCTION AND MOTIVATION

In the literature, there exist several approaches to risk
analysis through attack-graph based models as they represent
an interesting data structure that allows modelling multiple
ways of penetrating a network. However, selecting one or
another approach to be consider in a potential lab or real
scenario seems to be a complex task mostly because some of
these models are just defined theoretically and simple
experimentation has been provided on them. Additionally, it
seems to be a complex task to compare two models to
determine, under certain equivalent circumstances, which of
the two is performing better.

With this aim in mind a software component defining the
basic data structures and general interfaces of the detection and
reaction parts is defined as part of the Multigraph project, a
joint effort between the University of Verona and the
University of Murcia, and whose early results are being
described as part of this paper. The main target of the project is
to build a simulator allowing security researchers and
practitioners to implement different models and try to compare
them, when possible, using similar assumptions. It is also
intended to provide and describe a set of common interfaces
that any potential researcher willing to design, implement and
test a new model in the future could follow as a basic template
to guide its design and deployment.

II. HIGH-LEVEL VIEW OF THE STRUCTURE OF THE SIMULATOR

The attack graph model simulator aims to provide a tool that
can analyse a specific network by means of different models,
offer the user (e.g., either a security specialist or a system
administrator) a graphical visualization of the graph, and
produce results that are consistent and can be easily compared
to one another, independently of the model used for the
analysis. To this end, the models are implemented following a
common structure and interface, which allows the simulator to
interact with them.

A. Core class implementing a model
The model implementation is defined by a set of classes

including one core class that has to implement a common
interface named DecisionInterface. This interface includes
different methods that enable the simulator to do the real
continuous interaction with the model and provide the results
based on such interaction.

The core class is working in a multi-thread environment and
all the additional classes required by any particular model to be
implemented have to communicate with this core class.

Several core classes representing each one a different model
already implemented in the simulator are provided to the user
of the simulator when it is first run as depicted in Fig. 1.
B. Configuration

As each attack graph model is having a different set of
parameters, another important aspect considered while
designing the simulator was the definition of different template
windows that any designer of a model could use to get the key
values that need to be provided to make the model run under
certain circumstances.

As an example in Fig. 2 some of the values required by the
model [1] to run are depicted, together with some of the most
relevant actions that can be considered to provide certain
dynamism to the model execution while running it either step
by step or as a whole.
C. Visualization

The simulator has been also designed to provide a graphical
representation of the model and the graph being analysed
during execution. This enables the user to see a representation

Fig. 1. Simulator main window

JNIC2015 Quinta sesión: Artı́culos cortos - Seguridad en Redes, ataques, contramedidas y criptografı́a

76

of the model and interact with it. This is achieved through the
use of a graph visualization class that receives as an input the
nodes and edges of the model, and presents them on a screen.
This visualization is using the library JGraphX [2] to display
the graph.

An example of the representation of one sample graph for
the model [1] is provided in Fig. 3.

In our simulator a given attack graph model can provide a

basic graphical interface to interact with it adding and deleting
nodes and edges, changing the properties of these, etc. Whether
or not this should be able to be done at any moment during
runtime, or only at the beginning, depends on the specific
features of the model being used.

In addition to that, the current version is able to represent the
data at the lowest level and it represents the different classes of

nodes through different colours and shapes. We are also
intending to provide a multi-layered graph with abstraction and
folding capabilities.

III. FIRST SET OF LESSONS LEARNT

The first issue that have emerged from this work is related
with the innate difficulties while comparing different attack
graph models. This is mostly due to the lack of a common
structure or even a similar approach to the problem. There are
several attempts to create a standard way to manage this
problem, but each one has some issues at a certain point.

As a matter of example, and based on our design and
implementation experience with different models existing in
the simulator, there is a scale for the risk management (i.e.,
low, medium, high) but it is not mandatory or even
recommended. The same happens inside the network analysis:
how it should be defined the probability of a service being
really compromised? Which should be the target: services,
machines or both? And, what happens if the system is
distributed or virtualized and then including different tenants?

In fact, as part of this effort, it has been also faced the
problem that even taking two models with the same basic
assumptions (e.g., same graph structure: services as nodes,
exploits as edges, countermeasures as nodes and evidences as
attributes), the outputs of these models can be different.

This is leading to the identification of a major issue when
considering the comparison between different attack graph
models, which is the lack of a standard normalized way to
approach the problem, including specially the way to provide
the input to the model and the way the model is describing its
outputs.

IV. CONCLUSION

This paper describes a first attempt towards the creation of a
simulator willing to help with the definition of new attack
graph models. A first version of this simulator has been created
and several models have been already implemented using it.
Moreover, a first comparison between different existing
proposals has been performed. As future work, we are planning
to include new implementations of attack graph models and
improve the current definition of the common interfaces, as
well as providing general access to researchers to the
simulator, so it can be used to design novel approaches.

ACKNOWLEDGEMENTS

This work has been partially funded with the support from
the Spanish MICINN (project DHARMA, Dynamic
Heterogeneous Threats Risk Management and Assessment,
with code TIN2014-59023-C2-1-R) and the European
Commission (FEDER/ERDF).

REFERENCES

[1] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk
management using bayesian attack graphs,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 1, pp. 61-74,
January/February 2012.

[2] JGraphX library, [Online] https://github.com/jgraph/jgraphx.

Fig. 2. Model configuration frame

Fig. 3. Example of graph visualization for a given model

JNIC2015 Quinta sesión: Artı́culos cortos - Seguridad en Redes, ataques, contramedidas y criptografı́a

77

